Menu
Modern science
Soil Microbes Accelerate Global Warming

Bold New Approach to Wind 'Farm' Design May Provide Efficiency Gains

Soft Memory Device Opens Door to New Biocompatible Electronics

Most Elliptical Galaxies Are 'Like Spirals'

New Planets Feature Young Star and Twin Neptunes

Editing the Genome: Scientists Unveil New Tools for Rewriting the Code of Life

High Social Rank Comes at a Price, Wild Baboon Study Finds

Fossil Forensics Reveals How Wasps Populated Rotting Dinosaur Eggs

Monitoring Cellular Interactions at Nano-Scale in More Detail Than Ever Before

Non-Africans Are Part Neanderthal, Genetic Research Shows

Making Blood Sucking Deadly for Mosquitoes

Rising Oceans: Too Late to Turn the Tide?

Newly Developed Fluorescent Protein Makes Internal Organs Visible

NASA's Dawn Spacecraft Returns Close-Up Image of Giant Asteroid Vesta

Bacteria Use Batman-Like Grappling Hooks to 'Slingshot' On Surfaces, Study Shows

Mysterious Fossils Provide New Clues to Insect Evolution

Twisted Tale of Our Galaxy's Ring: Strange Kink in Milky Way

Engineering Excitable Cells for Studies of Bioelectricity and Cell Therapy

Ancient Footprints Show Human-Like Walking Began Nearly 4 Million Years Ago

Memories May Skew Visual Perception

Movement of Black Holes Powers Quasars, the Universe's Brightest Lights

First Artificial Neural Network Created out of DNA: Molecular Soup Exhibits Brainlike Behavior

Dolphins' 'Remarkable' Recovery from Injury Offers Important Insights for Human Healing

Cosmological Evolution of Dark Matter Is Similar to That of Visible Matter

Exoplanet Aurora: An Out-Of-This-World Sight

Epigenetic 'Memory' Key to Nature Versus Nurture
Researchers at the John Innes Centre have made a discovery, reported this evening (24 July) in Nature, that explains how an organism can create a biological memory of some variable condition, such as quality of nutrition or temperature. The discovery explains the mechanism of this memory -- a sort of biological switch -- and how it can also be inherited by offspring.

The work was led by Professor Martin Howard and Professor Caroline Dean at the John Innes Centre.

Professor Dean said: "There are quite a few examples that we now know of where the activity of genes can be affected in the long term by environmental factors. And in some cases the environment of an individual can actually affect the biology or physiology of their offspring but there is no change to the genome sequence."

For example, some studies have shown that in families where there was a severe food shortage in the grandparents' generation, the children and grandchildren have a greater risk of cardiovascular disease and diabetes, which could be explained by epigenetic memory. But until now there hasn't been a clear mechanism to explain how individuals could develop a "memory" of a variable factor, such as nutrition.

The team used the example of how plants "remember" the length of the cold winter period in order to exquisitely time flowering so that pollination, development, seed dispersal and germination can all happen at the appropriate time.

Professor Howard said: "We already knew quite a lot about the genes involved in flowering and it was clear that something goes on in winter that affects the timing of flowering, according to the length of the cold period."

Using a combination of mathematical modelling and experimental analysis the team has uncovered the system by which a key gene called FLC is either completely off or completely on in any one cell and also later in its progeny. They found that the longer the cold period, the higher the proportion of cells that have FLC stably flipped to the off position. This delays flowering and is down to a phenomenon known as epigenetic memory.

Epigenetic memory comes in various guises, but one important form involves histones -- the proteins around which DNA is wrapped. Particular chemical modifications can be attached to histones and these modifications can then affect the expression of nearby genes, turning them on or off. These modifications can be inherited by daughter cells, when the cells divide, and if they occur in the cells that form gametes (e.g. sperm in mammals or pollen in plants) then they can also pass on to offspring.

Together with Dr Andrew Angel (also at the John Innes Centre), Professor Howard produced a mathematical model of the FLC system. The model predicted that inside each individual cell, the FLC gene should be either completely activated or completely silenced, with the fraction of cells switching to the silenced state increasing with longer periods of cold.

To provide experimental evidence to back up the model, Dr Jie Song in Prof. Dean's group used a technique where any cell that had the FLC gene switched on, showed up blue under a microscope. From her observations, it was clear that cells were either completely switched or not switched at all, in agreement with the theory.

Dr Song also showed that the histone proteins near the FLC gene were modified during the cold period, in such a way that would account for the switching off of the gene.

Funding for the project came from BBSRC, the European Research Council, and The Royal Society.

Professor Douglas Kell, Chief Executive, BBSRC said: "This work not only gives us insight into a phenomenon that is crucial for future food security -- the timing of flowering according to climate variation -- but it uncovers an important mechanism that is at play right across biology. This is a great example of where the research that BBSRC funds can provide not only a focus on real life problems, but also a grounding in the fundamental tenets of biology that will underpin the future of the field. It also demonstrates the value of multidisciplinary working at the interface between biology, physics and mathematics."

Для печати

New Material Lets Electrons 'Dance' and Form New State

Cod Resurgence in Canadian Waters

Fundamental Matter-Antimatter Symmetry Confirmed

First True View of Global Erosion

NASA's WISE Finds Earth's First 'Trojan' Asteroid

Engineers Fly World's First 'Printed' Aircraft

Scientist Converts Human Skin Cells Into Functional Brain Cells

Rainforest Plant Developed 'Sonar Dish' to Attract Pollinating Bats

Sea Level Rise Less from Greenland, More from Antarctica, Than Expected During Last Interglacial

How Bats Stay On Target Despite the Clutter

Fall of the Neanderthals: Volume of Modern Humans Infiltrating Europe Cited as Critical Factor

Largest-Ever Map of Plant Protein Interactions

Some Plants Duplicate Their DNA to Overcome Adversity


Menu
Diamonds Pinpoint Start of Colliding Continents

Researchers Identify Seventh and Eighth Bases of DNA

Fool's Gold Gives Scientists Priceless Insight Into Earth's Evolution

Astronomers Discover Largest and Most Distant Reservoir of Water Yet

Major Step Toward Creating Faster Electronics Using Graphene

New Photonic Crystals Have Both Electronic and Optical Properties

Epigenetic 'Memory' Key to Nature Versus Nurture

Climate Change to Increase Yellowstone Wildfires Dramatically

Retinal Cells Thoughts to Be the Same Are Not, Biologist Says

Minority Rules: Scientists Discover Tipping Point for the Spread of Ideas

Mitochondria Share an Ancestor With SAR11, a Globally Significant Marine Microbe

Drug Shown to Improve Sight for Patients With Inherited Blindness

Elliptical Galaxies Are Not Dead

Hubble Constant: A New Way to Measure the Expansion of the Universe

Enceladus Rains Water Onto Saturn

Engineers Develop One-Way Transmission System for Sound Waves

Researchers Graft Olfactory Receptors Onto Nanotubes

New Invisibility Cloak Hides Objects from Human View

Bionic Microrobot Mimics the 'Water Strider' and Walks On Water

How Memory Is Lost: Loss of Memory Due to Aging May Be Reversible

Reservoirs of Ancient Lava Shaped Earth

Wave Power Can Drive Sun's Intense Heat

Social Deficits Associated With Autism, Schizophrenia Induced in Mice With New Technology

Tundra Fires Could Accelerate Climate Warming

Chandra X-Ray Observatory Images Gas Flowing Toward Black Hole