Menu
Modern science
Soil Microbes Accelerate Global Warming

Bold New Approach to Wind 'Farm' Design May Provide Efficiency Gains

Soft Memory Device Opens Door to New Biocompatible Electronics

Most Elliptical Galaxies Are 'Like Spirals'

New Planets Feature Young Star and Twin Neptunes

Editing the Genome: Scientists Unveil New Tools for Rewriting the Code of Life

High Social Rank Comes at a Price, Wild Baboon Study Finds

Fossil Forensics Reveals How Wasps Populated Rotting Dinosaur Eggs

Monitoring Cellular Interactions at Nano-Scale in More Detail Than Ever Before

Non-Africans Are Part Neanderthal, Genetic Research Shows

Making Blood Sucking Deadly for Mosquitoes

Rising Oceans: Too Late to Turn the Tide?

Newly Developed Fluorescent Protein Makes Internal Organs Visible

NASA's Dawn Spacecraft Returns Close-Up Image of Giant Asteroid Vesta

Bacteria Use Batman-Like Grappling Hooks to 'Slingshot' On Surfaces, Study Shows

Mysterious Fossils Provide New Clues to Insect Evolution

Twisted Tale of Our Galaxy's Ring: Strange Kink in Milky Way

Engineering Excitable Cells for Studies of Bioelectricity and Cell Therapy

Ancient Footprints Show Human-Like Walking Began Nearly 4 Million Years Ago

Memories May Skew Visual Perception

Movement of Black Holes Powers Quasars, the Universe's Brightest Lights

First Artificial Neural Network Created out of DNA: Molecular Soup Exhibits Brainlike Behavior

Dolphins' 'Remarkable' Recovery from Injury Offers Important Insights for Human Healing

Cosmological Evolution of Dark Matter Is Similar to That of Visible Matter

Exoplanet Aurora: An Out-Of-This-World Sight

Microbes Consumed Oil in Gulf Slick at Unexpected Rates, Study Finds
More than a year after the largest oil spill in history, perhaps the dominant lingering question about the Deepwater Horizon spill is, "What happened to the oil?" Now, in the first published study to explain the role of microbes in breaking down the oil slick on the surface of the Gulf of Mexico, Woods Hole Oceanographic Institution (WHOI) researchers have come up with answers that represent both surprisingly good news and a head-scratching mystery.

In research scheduled to be published in the Aug. 2 online edition of Environmental Research Letters, the WHOI team studied samples from the surface oil slick and surrounding Gulf waters. They found that bacterial microbes inside the slick degraded the oil at a rate five times faster than microbes outside the slick -- accounting in large part for the disappearance of the slick some three weeks after Deepwater Horizon's Macondo well was shut off.

At the same time, the researchers observed no increase in the number of microbes inside the slick -- something that would be expected as a byproduct of increased consumption, or respiration, of the oil. In this process, respiration combines food (oil in this case) and oxygen to create carbon dioxide and energy.

"What did they do with the energy they gained from this increased respiration?" asked WHOI chemist Benjamin Van Mooy, senior author of the study. "They didn't use it to multiply. It's a real mystery," he said.

Van Mooy and his team were nearly equally taken aback by the ability of the microbes to chow down on the oil in the first place. Going into the study, he said, "We thought microbe respiration was going to be minimal." This was because nutrients such as nitrogen and phosphorus -- usually essential to enable microbes to grow and make new cells -- were scarce in the water and oil in the slick. "We thought the microbes would not be able to respond," Van Mooy said.

But the WHOI researchers found, to the contrary, that the bacteria not only responded, but did so at a very high rate. They discovered this by using a special sensor called an oxygen optode to track the changing oxygen levels in water samples taken from the slick. If the microbes were respiring slowly, then oxygen levels would decrease slowly; if they respired quickly, the oxygen would decrease quickly.

"We found that the answer was 'quick,'" Van Mooy said. "By a lot."

Bethanie Edwards, a biochemist in Van Mooy's lab and lead author of the paper, said she too was "very surprised" by the amount of oil consumption by the microbes. "It's not what we expected to see." She added that she was also "a little afraid" that oil companies and others might use the results to try to convince the public that spills can do relatively little harm. "They could say, 'Look, we can put oil into the environment and the microbes will eat it,'" she said.

Edwards, a graduate student in the joint MIT/WHOI program, pointed out that this is not completely the case, because oil is composed of a complex mixture molecules, some of which the microbes are unable to break down.

"Oil is still detrimental to the environment, " she said, "because the molecules that are not accessible to microbes persist and could have toxic effects." These are the kinds of molecules that can get into the food web of both offshore and shoreline environments, Edwards and Van Mooy said. In addition, Edwards added, the oil that is consumed by microbes "is being converted to carbon dioxide that still gets into the atmosphere."

Follow-up studies already "are in place," Van Mooy says, to address the "mysterious" finding that the oil-gorging microbes do not appear to manufacture new cells. If the microbes were eating the oil at such a high rate, what did they do with the energy? Van Mooy, Edwards, and their colleagues hypothesize that they may convert the energy to some other molecule, like sugars or fats. They plan to use "state-of-the-art methods" under development in their laboratory to look for bacterial fat molecules, a focus of Van Mooy's previous work. The results, he says, "could show where the energy went."

Van Mooy said he isn't sure exactly what fraction of the oil loss in the spill is due to microbial consumption; other processes, including evaporation, dilution, and dispersion, might have contributed to the loss of the oil slick. But the five-fold increase in the microbe respiration rate suggests it contributed significantly to the oil breakdown. "Extrapolating our observations to the entire area of the oil slick supports the assertion microbes had the potential to degrade a large fraction of the oil as it arrived at the surface from the well," the researchers say in their paper.

"This is the first published study to put numbers on the role of microbes in the degradation of the oil slick," said Van Mooy. "Our study shows that the dynamic microbial community of the Gulf of Mexico supported remarkable rates of oil respiration, despite a dearth of dissolved nutrients," the researchers said.

Edwards added that the results suggest "that microbes had the metabolic potential to break down a large portion of hydrocarbons and keep up with the flow rate from the wellhead."

Also participating in the study from WHOI were researchers Christopher M. Reddy, Richard Camilli, Catherine A. Carmichael, and Krista Longnecker.

The research was supported by RAPID grants from the National Science Foundation.

Для печати

New Material Lets Electrons 'Dance' and Form New State

Cod Resurgence in Canadian Waters

Fundamental Matter-Antimatter Symmetry Confirmed

First True View of Global Erosion

NASA's WISE Finds Earth's First 'Trojan' Asteroid

Engineers Fly World's First 'Printed' Aircraft

Scientist Converts Human Skin Cells Into Functional Brain Cells

Rainforest Plant Developed 'Sonar Dish' to Attract Pollinating Bats

Sea Level Rise Less from Greenland, More from Antarctica, Than Expected During Last Interglacial

How Bats Stay On Target Despite the Clutter

Fall of the Neanderthals: Volume of Modern Humans Infiltrating Europe Cited as Critical Factor

Largest-Ever Map of Plant Protein Interactions

Some Plants Duplicate Their DNA to Overcome Adversity

how to upload photo to instagram from mac

Menu
Diamonds Pinpoint Start of Colliding Continents

Researchers Identify Seventh and Eighth Bases of DNA

Fool's Gold Gives Scientists Priceless Insight Into Earth's Evolution

Astronomers Discover Largest and Most Distant Reservoir of Water Yet

Major Step Toward Creating Faster Electronics Using Graphene

New Photonic Crystals Have Both Electronic and Optical Properties

Epigenetic 'Memory' Key to Nature Versus Nurture

Climate Change to Increase Yellowstone Wildfires Dramatically

Retinal Cells Thoughts to Be the Same Are Not, Biologist Says

Minority Rules: Scientists Discover Tipping Point for the Spread of Ideas

Mitochondria Share an Ancestor With SAR11, a Globally Significant Marine Microbe

Drug Shown to Improve Sight for Patients With Inherited Blindness

Elliptical Galaxies Are Not Dead

Hubble Constant: A New Way to Measure the Expansion of the Universe

Enceladus Rains Water Onto Saturn

Engineers Develop One-Way Transmission System for Sound Waves

Researchers Graft Olfactory Receptors Onto Nanotubes

New Invisibility Cloak Hides Objects from Human View

Bionic Microrobot Mimics the 'Water Strider' and Walks On Water

How Memory Is Lost: Loss of Memory Due to Aging May Be Reversible

Reservoirs of Ancient Lava Shaped Earth

Wave Power Can Drive Sun's Intense Heat

Social Deficits Associated With Autism, Schizophrenia Induced in Mice With New Technology

Tundra Fires Could Accelerate Climate Warming

Chandra X-Ray Observatory Images Gas Flowing Toward Black Hole